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by the structure of the superpotential describing the toric singularity. We present explicit
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1. Introduction

Instantons represent a class of non-perturbative phenomena in gauge theory and string

theory that is particularly amenable to theoretical study. In their original incarnation [1]

they were described by solutions to the euclidean equations of motion of a gauge theory and

their semiclassical analysis [2] exposed the existence of chiral symmetry violating terms in

the effective action of great relevance to particle phenomenology.

After the advent of D-branes [3], it was soon realized that D-branes with a euclidean

world-sheet wrapped on a non trivial cycle could give rise to closely related effects [4 – 9].

(In perturbative string theory, fundamental strings with a euclidean world-sheet wrapped

on such a cycle, known as world-sheet instantons, had already been extensively used [10].)

The analogy between D-brane instantons and ordinary gauge instantons is striking but

there are also subtle differences. While a gauge instanton requires a gauge theory whose

fields provide the necessary background, a D-brane instanton arises from a geometrical

object that exists (in this framework) independently on the D-branes giving rise to the

gauge theory, and it has colloquially speaking, a life of its own. This fact opens up the

possibility of considering configurations that do not correspond to ordinary gauge theory

instantons but nevertheless modify the gauge dynamics by giving rise to new terms in

the effective lagrangian. These configurations and their contributions are known as “ex-

otic” or “stringy”. Their properties have been intensely investigated in the last few years

due to their relevance to N = 1 dynamics, such as MSSM/GUT phenomenology, moduli

stabilization, and dynamical supersymmetry (SUSY) breaking [11]–[45].
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For a single instanton, one can roughly distinguish three types of configurations of

interest:

If a euclidean D-brane wraps a cycle on which more than one space-filling D-branes

are also wrapped, we are in a situation similar to that of an ordinary gauge instanton.

In this case, one expects the generation of the familiar instanton induced corrections to

the superpotential [46, 47] provided that the rank assignment of the various groups is the

correct one.

If the euclidean D-brane wraps a cycle on which no space-filling D-brane is present

one is faced with an exotic configuration, without direct gauge theory analogue. The study

of this configuration is made difficult [21] by the presence of extra neutral fermionic zero-

modes for the instanton stemming from the fact that the instanton spectrum is not sensitive

to the presence of the space-filling D-brane and thus it mantains all four fermionic goldstino

zero-modes arising from breaking half of the eight supercharges of a typical type II Calabi-

Yau compactification. In order to get a non-vanishing contribution to the holomorphic

quantities of the theory one is required to lift two such fermionic modes and the most

readily available tool to accomplish this task is an orientifold projection [21, 27].

The third case, where there is only one space-filling D-brane wrapping the same cycle

as the instanton, is somewhat in the middle and is also very interesting. Although from

the gauge theory point of view one does not expect any instanton solution in a U(1) theory

it can be shown that the presence of one space-filling brane is enough to soak-up the extra

zero-modes and in some cases one gets contributions to the superpotential, once again

provided the other rank assignments are correct [40] (see also [35, 39]).

These three basic cases can of course be combined into more complex, multi-instanton

configurations that display quite a rich structure. In this case various instantons can also

split and recombine along curves of marginal stability [39].

The study of D-brane instantons has taken place in different contexts, most notably

the brane-world scenarios where one first compactifies space-time to four dimensions, then

engineers a phenomenologically interesting N = 1 gauge theory with a configuration of

wrapping and intersecting branes and orientifolds and finally generates non-perturbative

effects by wrapping euclidean D-branes on the geometric cycles. But there is also great

interest in considering “local” constructions of D-branes probing a space-time singularity in

an otherwise non-compact six dimensional manifold. This is of course crucial in the context

of the gauge/gravity correspondence but it is also relevant to string phenomenology when

properly embedded in a consistent configuration.

In order to make progress one has to have control over the action describing the

coupling of the fields in the gauge theory to the instanton moduli, as well as the action

describing the interaction of the moduli among themselves. Since, for the time being, we

are only interested in corrections to the holomorphic quantities of the gauge theory (most

notably the superpotential), we will restrict ourselves to the coupling of the moduli to chiral

superfields. Their couplings can be derived by a variety of means, the most direct one being

applicable to the case of D-branes probing an orbifold or orientifold singularity [48], where

a conformal field theory (CFT) description is straightforwardly available.

It is however important to try to go beyond the orbifold limit, particularly having
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in mind applications to the gauge/gravity correspondence, where orbifold gauge theories

provide too restrictive a class of models. In this context it is much more interesting to

consider gauge theories arising from D-branes probing a toric singularity [49]–[58], where

the techniques developed in the last decade provide a beautiful set of phenomena such

as Seiberg duality, cascades and, in some cases, confinement or dynamical SUSY break-

ing [59]–[64]. Theories arising from toric singularities also have the trademark of possessing

chiral operators that, in spite of being non-renormalizable by naive power-counting, be-

come exactly marginal in the infrared and contribute to the superpotential, in accordance

to the AdS/CFT correspondence. We will see that these operators also play an important

role in the instanton dynamics.

In this paper we address the above issue and show how to construct the general action

coupling instantons to gauge theories arising from branes probing arbitrary toric singu-

larities. We will give a general set of rules for how to construct such an action given

the knowledge of the superpotential for the gauge theory. We will consider many explicit

examples such as the Suspended Pinch Point (SPP), the Conifold and the first three del

Pezzo’s (dP1, dP2 and dP3).

The basic idea behind our construction is the well known fact (see e.g. [49]–[54]) that

any quiver gauge theory describing D-branes at a toric singularity can be obtained by

higgsing a sufficiently large orbifold, for which techniques are readily available to obtain the

instanton action. The higgsing procedure can be applied (with some care) to the instanton

sector as well yielding all the desired couplings. This method works quite generally and

it applies to rigid instantons as well as instantons with internal neutral modes. In fact,

the role played by these extra neutral modes in the multi-instanton case is crucial for the

higgsing procedure to work. Indeed, as it will become clear, single instantons in a toric

geometry will generically descend from multi-instantons in the unhiggsed parent theory.

Although the main focus of this paper is to present the general technique and some

basic examples, we will also briefly touch upon a few applications, such as the ubiquitous

nature of the Affleck-Dine-Seiberg (ADS) superpotential and various comments on exotic

contributions to the theory on the SPP and the del Pezzo’s.

The paper is organized as follows:

In section 2 we outline the general strategy of our approach and spell out the rules that

can be used to obtain the instanton action for a gauge theory arising from D-branes at a

toric singularity. We do this in a way that will hopefully allow the reader, who is not inter-

ested in going through the lengthy algebraic arguments, to construct the coupling needed

in the specific case of interest. The remainder of the paper is essentially a justification of

these rules with examples and applications.

Section 3 is a short summary of the well known properties of the N = 4 theory and

its orbifolds needed in our construction.

Section 4 is the first and simplest example of how the higgsing procedure works for the

instanton. Although nothing new is learned in this case, since one goes from a well known

model (the N = 2 C
2/Z2 orbifold) to another well known case (the N = 4 theory itself),

this shows in detail how we will apply the procedure to more complicated cases and should

also be thought of as a first consistency check.
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Section 5 discusses the construction of the instanton actions for SPP and the Conifold

from the higgsing of the C
3/Z2 × Z2 orbifold, together with two further brief consistency

checks. Already at this stage one sees the deviation of the instanton action from the one

for an orbifold gauge theory. Namely there exist higher order holomorphic couplings of the

charged fermionic zero-modes to the chiral superfields that follow the same index pattern

as the superpotential. These terms are required for consistency with further higgsing and

cannot be neglected.

In section 6 we take a short break and discuss the recovery of the ADS superpotential

from the charged bosonic and the fermionic anti-holomorphic couplings. This result is well

known but put in this context it shows the necessity of not altering the anti-holomorphic

couplings with respect to the naive expectations from the orbifold theory. This fact is

consistent with our findings.

Section 7 continues discussing more examples, namely the first three del Pezzo’s as

embedded in a C
3/Z3 × Z3 orbifold. These models have some intrinsic interest in the

context of dynamical SUSY breaking but we also discuss them at length because, contrary

to all models discussed in section 5, they are chiral and we would like to show that our

procedure works in this case as well. We hope the reader will not be put off by the long

formulas in this section and will remember that they also follow straightforwardly from

the rules of section 2.

In section 8 we end by giving some sample computations of stringy instanton effects.

We will be rather sketchy, since we hope to return to these applications in a separate

publication.

While this work was in progress, we became aware of the related but complementary

work appearing in [65].

2. General strategy

In this section we outline the general strategy of our approach and spell out the rules that

can be used to obtain the instanton action for a gauge theory arising from D-branes at a

toric singularity.

We start by recalling that it is always possible to embed the toric diagram describing

such a singularity into that of a sufficiently large orbifold singularity. From the gauged

linear sigma model (GLSM) description of the singularity, it is possible to see that this

means one can go from the orbifold singularity to the non-orbifold one by partial resolutions,

i.e. by turning on some Fayet-Iliopoulos (FI) terms in the GLSM. From the quiver gauge

theory point of view, turning on background FI terms1 necessitates that some fields acquire

vacuum expectation values (VEVs) in order to satisfy the D-flatness conditions. As a

consequence, by the Brout-Englert-Higgs mechanism, some pairs of gauge groups will be

higgsed to their diagonal part, eating in the process the field which had a VEV. Some other

matter fields then acquire a mass and are integrated out, typically yielding new terms in

1As is usual in the literature, we will assume that all the statements which are strictly correct when all

nodes of the quiver are U(1) classical gauge groups carry over smoothly to the general case where the nodes

are (strongly coupled) SU(N)s.
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the superpotential which are of order higher than cubic (of course, orbifolds only have cubic

superpotentials).

We propose to apply this procedure also to determine the structure of instanton zero

modes for D-branes on non-orbifold toric singularities. Namely, we would like to apply the

higgsing procedure not only to the quiver gauge theory, but to the quiver gauge theory

coupled to its instanton sector.

Recall that quite generically the zero modes of a (multi)-instanton configuration can

be divided into neutral (associated to open strings stretched between two Euclidean D-

branes) and charged (associated to open strings with one end on the instanton and one

on the gauge theory brane). The charged zero modes are those that couple directly to the

fields in the gauge theory. It is clear that the matter field VEVs will give masses to some

of the charged instanton zero modes. Moreover, a corresponding neutral zero mode must

also obtain a VEV and correspondingly some neutral zero modes will also become massive.

This can be understood in several ways. Firstly, it is clear that there cannot be more kinds

of instantons than gauge groups in a given geometry, since the number of gauge groups

is essentially given by the number of non trivial compact cycles over which D-branes can

wrap, before any anomaly argument is put forward. Secondly, the same background closed

string mode which generates the FI term in the matter sector also generates a similar term

in the instanton neutral zero mode sector, which is (before the ADHM limit [9]) just the

reduction to zero dimensions of the quiver gauge theory. As a consequence, the structure of

the surviving neutral zero modes mirrors exactly the structure of quiver gauge and matter

fields. This means that if we give a VEV to the chiral superfield Φab in the bi-fundamental

representation of the gauge groups associated to node a and b we will also give a VEV to

the corresponding neutral scalar zero mode sab, a complex combination of the real zero

modes, usually denoted by χ, present in the non rigid case.

Taking all the VEVs into account, one goes on to see which charged instanton zero

modes become massive and how they couple to the chiral fields of the gauge theory and

to the neutral zero modes. One finds that only the “diagonal” zero modes (connecting a

gauge group of the quiver with its own instanton) and the fermionic zero modes with an

index structure similar to the chiral superfields surviving in the quiver remain.

More explicitly:

• Consider a specific node a of a particular quiver gauge theory. There will always

be charged bosonic and fermionic zero modes connecting this node with its own

instanton node, also denoted by a. According to the traditional notation such zero

modes will be denoted by ωα̇,aa, (a bosonic “spinor” - the index α̇ = 1, 2 will very

often be omitted in writing), µaa, (a fermionic “scalar”) and by their conjugates ω̄α̇,aa

and µ̄aa going from the instanton node to the gauge theory node.

• Consider now two specific nodes a and b (not necessarily distinct) of a particular

quiver gauge theory. For each chiral superfield Φab connecting these two nodes there

will be a corresponding fermionic zero mode µab connecting the gauge group a to the

instanton b and its “conjugate” µ̄ab, this time connecting the instanton a to the gauge
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group b. Notice that the two zero modes are described by two completely distinct

arrows in the extended quiver which may be chiral.

As an illustration of these rule consider the trivial case of N = 4. The quiver consists

of a single node with three incoming/outgoing arrows corresponding to the three chiral

superfields of the N = 1 notation. There will be thus one set of bosonic modes (ωα̇, ω̄α̇),

and four sets of fermionic modes (µA, µ̄A), (A = 1, 2, 3, 4), one from the first rule and three

from the second one.

So far this is a straightforward generalization of the rules for the orbifold theory and

it is as expected. However some care is needed in integrating out the massive zero modes

to obtain the couplings. For the generic quiver gauge theory, instead of generalizing the

CFT techniques used in the case of orbifolds, we rely on other methods. The two main

tools we use are the splitting of the fermionic instanton action into a holomorphic and

a anti-holomorphic piece and the consistency condition that, if by further higgsing we

recover a smaller orbifold, the action obtained by these rules must match the well known

one obtained by CFT.

The results we obtain are quite simple to express and seem to be completely generic.

• The coupling between the bosonic charged zero modes and the superfields, as well

as the anti-holomorphic coupling between the charged fermionic zero modes and the

superfields is exactly as in the orbifold case. Namely, for every pair of nodes a and b

for which the relevant fields exist there will be the following couplings:

ω̄aaΦabΦ
†
baωaa, ω̄aaΦ

†
abΦbaωaa, µ̄aaΦ

†
abµba, µ̄abΦ

†
baµaa. (2.1)

In the case of multiple instantons there are similar couplings between the charged

moduli and the neutral moduli, denoted by s, that are crucial for consistency and will

be discussed at length in the following. However the extra neutral moduli will not

be present in the case of a single (fractional) instanton and this is the configuration

that is mostly studied in practical applications.

• The holomorphic coupling between the charged fermionic zero modes and the super-

fields is obtained by taking each term in the superpotential and, while keeping the

same quiver index structure, substituting two fermionic charged zero modes and all

combinations of matter fields Φ and neutral bosonic zero modes s allowed by the

symmetries. Again ignoring the bosonic modes s for the time being, this rule means

that, if one encounters, say, the term tr Φ12Φ23Φ34Φ41 in the superpotential, one must

expect the four terms:

tr
(

µ̄12Φ23Φ34µ41 + µ̄23Φ34Φ41µ12 + µ̄34Φ41Φ12µ23 + µ̄41Φ12Φ23µ34

)

(2.2)

in the instanton action.

In the following we will also see that the bosonic neutral modes can be accommodated

in the same way, remembering to put them in a different position (to the right of µ) due
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to their different index structure. Also, as it will become clear, there is a relative factor of

(−1) for each s appearing in the holomorphic part.2

The remainder of the paper is a justification and test of the above rules. The reader

who is not interested in the algebraic details and is willing to take these rules for granted

can simply skim through the notation in the next section and look at the few examples

and applications in sections 6 and 8.

3. Notation and conventions

In this short section we review the notation for the well known orbifold case that will

serve as a starting point in our analysis. We start from a gauge theory living on D-branes

probing a simple orbifold of C
3. From the perturbative, open string point of view, the

quiver gauge theory is just obtained in the following way. One formulates N = 4 SYM in

N = 1 language and assigns to each of its fields a Chan-Paton structure derived from the

orbifold projection. Specifically, since we will only consider abelian orbifolds, the structure

of the gauge superfields turns out to be block diagonal, each block denoting the node of

a quiver. The chiral superfields Φi will have some components set to zero by the orbifold

projection and the remaining submatrices Φab will transform in the bi-fundamental (or

adjoint if a=b) representation. This already determines the quiver. The remaining data is

encoded in the superpotential following directly from inserting these matrices of fields into

the cubic N = 4 SYM superpotential 3

WN=4 = tr Φ1[Φ2,Φ3], (3.1)

In the instanton sector, one can again start from the spectrum and couplings of the

instanton zero modes for N = 4 SYM, which is well-known and can also be computed

straightforwardly in perturbation theory.

In order to set the stage for the rest of the paper and get acquainted with the different

kinds of zero modes, we write here the action of the zero modes:

S1 = tr

{

− [aµ, s†i ][a
µ, si] − i

2

(

Mαi[s†i ,M
4
α] − 1

2
ǫijkM

αi[sj ,Mk
α ]

)

+ i
(

µ̄iωα̇ + ω̄α̇µi + σµ
βα̇[Mβi, aµ]

)

λα̇
i + i

(

µ̄4ωα̇ + ω̄α̇µ4 + σµ
βα̇[Mβ4, aµ]

)

λα̇
4

− iDc
(

ω̄α̇(τ c)β̇α̇ωβ̇ + iη̄c
µν [aµ, aν ]

)

}

, (3.2)

In the expression (3.2) aµ, si and Da are neutral bosonic zero modes, MA
α and λα̇

A (with

A = i, 4) are fermionic neutral zero modes, while ωα̇ and ω̄α̇ are bosonic charged zero

2As a result of higgsing in the instanton sector, there will also be couplings higher than cubic among

neutral zero modes only. We will not focus on them in the following, since they follow straightforwardly

from the reduction to zero dimensions of the action of the toric quiver. These couplings can play a crucial

role in some multi-instanton configurations, see [39]. Notice however that some of them will be eventually

suppressed in the ADHM limit.
3We have written the 6 scalars Xa of N = 4 SYM first as an SU(4) antisymmetric matrix XAB =

(Σa)ABXa and then we have identified Φi = 1

2
ǫijkXjk and Φ†

i = Xi4.
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modes and µA, µ̄A are charged fermionic zero modes 4. The three complex fields si are

the complexification of the six real zero modes usually denoted by χ and they prove more

convenient for the formulations of the interactions.

To the above action, we must add the terms that couple the charged zero modes to

the matter fields. We find it convenient to write it together with terms that we omitted

in (3.2), which couple the charged zero modes to the bosonic neutral zero modes:

S2 = tr

{

1

2

(

ω̄α̇Φi + siω̄α̇

)(

Φ†
iω

α̇ + ωα̇s†i

)

+
1

2

(

ω̄α̇Φ†
i + s†i ω̄α̇

)(

Φiωα̇ + ωα̇si

)

+
i

2
µ̄i
(

Φ†
iµ

4 + µ4s†i
)

− i

2
µ̄4
(

Φ†
iµ

i + µis†i
)

− i

2
ǫijkµ̄

i
(

Φjµk − µjsk
)

}

. (3.3)

In order to be complete, we must also write the terms in the action that are actually

suppressed in the ADHM limit [9], but which here play a role in lifting some of the neutral

modes:

S3 = tr

{

1

2
D2

c − i

2

(

λα̇i[s
i, λα̇

4 ] − 1

2
ǫijkλα̇i[s

†
j , λ

α̇
k ]

)

+ [si, sj][s†j , s
†
i ] +

1

2
[si, s†i ][s

j, s†j ]
}

. (3.4)

As for the gauge theory, taking the orbifold projection the instanton zero modes too

will become larger matrices of zero modes carrying Chan-Paton indices relating them to the

different instantons and gauge groups. The rules determining which components survive the

projection are straightforward and we shall follow the conventions discussed in [21]. Namely,

si,M i, λi, µ
i, µ̄i acquire the same structure as Φi, whereas aµ,Dc, ω, ω̄,M4, λ4, µ

4, µ̄4 are

all block diagonal.

The action for the zero modes is again found by substitution in the N = 4 zero mode

actions (3.2), (3.3), (3.4). After reducing the supersymmetry we have the important option

of adding a FI term which modifies the very last term of (3.4) by letting:

[si, s†i ]aa → [si, s†i ]aa − ξaa ≡
∑

〈ba〉
(s†absba − sabs

†
ba) − ξaa, (3.5)

where ξ is a block diagonal matrix and the sum is over the nodes b connected to a by a

line in the quiver.

4. Warm-up: Higgsing from C
2/Z2 to N = 4

We start by performing a higgsing procedure in both the matter and the instanton moduli

sectors in a set up where we know from perturbative string theory both the starting point

and the end point. Namely we will go from the simplest of all orbifolds C
2/Z2, yielding a

N = 2 theory down to the N = 4 theory by resolving the singularity and higgsing one chiral

4Recall that neutral modes are those corresponding to strings with both ends on an instanton, while the

charged ones are those with one end on an instanton and the other on a spacetime filling D-brane, i.e. they

are in the (anti)fundamental of a gauge group.
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Figure 1: The quiver diagram for the Z2 theory.

field. There will be no suprises, but this exercise is useful to adjust the whole procedure

so that it yields consistent results.

We thus start by spelling out the field content of the C
2/Z2 quiver gauge theory,

including the instanton sector. It is simply obtained recalling that the orbifold action acts

as g : (z1, z2, z3) → (z1,−z2,−z3) and that its representation on the Chan-Paton indices

is given by γ(g) ≡ σ3. As reviewed in the previous section we get a block-diagonal gauge

field (each block can be as usual considered a Ni × Nj matrix in general) and the matter

fields are

Φ1 =

(

Φ11

Φ22

)

, Φ2 =

(

Φ12

Φ21

)

, Φ3 =

(

Φ′
12

Φ′
21

)

, (4.1)

see the quiver diagram in figure 1.

The superpotential is given by (Note, from here on we will omit writing the trace

explicitly):

WZ2
= Φ′

21Φ11Φ12 − Φ21Φ11Φ
′
12 + Φ′

12Φ22Φ21 − Φ12Φ22Φ
′
21 (4.2)

just by replacing (4.1) in the N = 4 expression (3.1).

In the instanton sector, we first consider the bosonic neutral modes, which are generally

matrices constituted by ki × kj matrix blocks, where ki can be considered as the instanton

number in the gauge group of each node. Then the aµ are block diagonal as the Aµ gauge

fields, and the si have the same form as the Φi.

The projection of the fermionic neutral modes has also been reviewed in the previous

section and turns out to be

M1 =

(

M11

M22

)

, M2 =

(

M12

M21

)

,

M3 =

(

M ′
12

M ′
21

)

, M4 =

(

M ′
11

M ′
22

)

(4.3)

where we have suppressed the spinor index α. The structure of the λα̇
A zero modes is exactly

the same as above.

For the charged instanton zero modes, we can decompose the matrices into ki × Nj

and Ni × kj blocks. The bosonic modes ωα̇ and ω̄α̇ are block diagonal, while the fermionic

modes µA and µ̄A have the same form as in (4.3) above. From now on we will denote

all the modes by indices relating them to the relevant instanton and/or gauge nodes, see

figure 2.
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Figure 3: The N = 4 theory higgsed down from the Z2 theory.

The complete action for the zero modes above, and their coupling to the matter fields,

is simply given by plugging back the above definitions into the N = 4 action given in the

previous section.

We can now perform the higgsing, which corresponds to resolving the C × (C2/Z2)

singularity to (locally) C
3. In the quiver, this is achieved by giving a VEV proportional to

the identity to a bifundamental field:

Φ′
21 = m. (4.4)

Of course, this requires the two gauge groups to have the same rank N1 = N2 ≡ N .

Moreover, giving a VEV to a single field is consistent only if we turn on (opposite) FI

terms for the diagonal U(1) factors of both nodes, ξ2 = −ξ1 = |m|2.
From the superpotential (4.2), we see that such a VEV gives a mass to the fields Φ12

and Φ11 − Φ22, which can then be integrated out. The F-term for Φ12 sets Φ11 = Φ22

exactly, so that we are left with the 3 matter fields Φ11, Φ21, Φ′
12 and 2 terms in the

superpotential which reproduce the N = 4 superpotential (3.1), see figure 3.
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We can now start to consider the effect of the VEV (4.4) on the instanton zero modes,

see figure 4. First of all, we consider the coupling of the matter fields to the bosonic charged

zero modes ωα̇ and ω̄α̇. The relevant piece of the instanton action, if we do not include the

neutral s fields, reads:

S2 ⊃ 1

2

(

ω̄11Φ
′†
12Φ

′
21ω11 + ω̄22Φ

′
21Φ

′†
12ω22

)

=
1

2
|m|2(ω̄11ω11 + ω̄22ω22) , (4.5)

where we have suppressed the α̇ indices and denoted (Φij)
† = Φ†

ji. We see that, as it

stands above, a single VEV would actually give a mass and lift all the charged bosonic

zero modes. This is clearly not what we expect, since of course there should be one pair of

charged bosonic zero modes in the N = 4 theory we obtain after higgsing.

In order to recover this result, we see that we also have to consider the coupling to the

neutral bosonic zero modes s′21:

S2 ⊃ 1

2

(

ω̄11Φ
′†
12 + s′†12ω̄22

)(

Φ′
21ω11 + ω22s

′
21

)

+
1

2

(

ω̄22Φ
′
21 + s′21ω̄11

)(

Φ′†
12ω22 + ω11s

′†
12

)

.

(4.6)

It is clear that if we give a VEV

s′21 = −m (4.7)

then the above action becomes a mass term for only one linear combination of the zero

modes

S2 ⊃ |m|2(ω̄11 − ω̄22)(ω11 − ω22). (4.8)
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That the neutral bosonic zero mode acquires a VEV such as (4.7) can be understood as

follows. Recall that in order to give a VEV to the matter field, we have to turn on FI

terms. Those are actually associated to turning on a background value for a closed string

(twisted) modulus. As the disk amplitudes with spacefilling or euclidean boundaries are

very much alike, we expect that a FI term will also appear in the D-term-like piece of the

action for the si as given in (3.5). Consequently, the action will be mininized by giving a

VEV to the bosonic zero mode in (4.7). Note also that the F-term like piece of (3.4) will

in turn produce mass terms that lift the zero modes s12 and s11 − s22, exactly in the same

way as it happens in the matter sector.5

Taking now ω̄11 = ω̄22, ω11 = ω22, s11 = s22 and s12 = 0 (the latter equality can be seen

as a consequence of the scaling limit, see the discussion later on), we see that the action

coupling the bosonic zero modes and the matter fields is exactly the one for the N = 4

theory, as in the first line of (3.3), after we make the identifications Φ11 ≡ Φ22 = 1√
2
Φ1,

Φ21 = Φ2, Φ′
12 = Φ3 and similarly for the si. (The factors of

√
2 are necessary in order to

keep all the fields canonically normalized.)

We now turn to consider the fermionic charged zero modes µ̄ and µ. Inserting the

VEVs (4.4) and (4.7) in (3.3), we obtain the following “mass” terms: (dropping an overall

normalization factor)

S2 ⊃ m∗µ̄′
21(µ

′
11 − µ′

22) + m∗(µ̄′
11 − µ̄′

22)µ
′
21 + mµ̄12(µ11 − µ22) + m(µ̄11 − µ̄22)µ12 . (4.9)

In order to integrate out these 8 zero modes, one should perform a Gaussian integral.

This involves a non-trivial determinant, since there are other terms in (3.3), involving

the above fermionic zero modes coupling to matter fields and neutral bosonic zero modes.

However, one easily realizes that in order to match the result of this integration with the

N = 4 result, one has to set to zero (i.e. scale away) all terms that have a prefactor which

is at least 1/|m|2. This is what we will indeed do here and in the following, but note that

we are nevertheless allowing for the possibility of keeping terms which go as some power of

1/m or of 1/m∗, i.e. are holomorphic or anti-holomorphic in m. The reason why we want

to keep them will be clear in the next section, where we perform two or more consecutive

higgsings. Why “holomorphic” terms do not scale away while non-holomorphic ones do

cannot be rigorously justified in the present set up, but is presumably related to the fact

that the former are protected while the latter receive large corrections during the non-

trivial RG flow that the theory undergoes from its classical description discussed here and

its IR effective dynamics.

As we are interested only in the corrections proportional to 1/m or 1/m∗, we can

integrate out independently the two sets of modes, by setting in turn 1/m = 0 and 1/m∗ =

0. Doing this, it turns out that everything works in the present case as if we could set all

the “massive” zero modes to zero, hence imposing µ11 = µ22 and µ′
11 = µ′

22 exactly, and

similarly for the barred ones.

5We see that in order for the latter zero modes to be consistently lifted, the ADHM scaling limit that

suppresses (3.4) has to be performed after the VEV, or FI parameter, is turned on. In other words, the

VEV will have to eventually scale in the ADHM limit in such a way that the masses for the zero modes

that we have integrated out do not vanish.
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Performing the identifications as before, together with µ11 = 1√
2
µ1, µ21 = µ2, µ′

12 = µ3,

µ′
11 = 1√

2
µ4 and similarly for µ̄A, we obtain exactly the couplings in the second line of (3.3),

up to a global prefactor of 1√
2

which can be reabsorbed by performing a further overall

rescaling.

We are left to discuss the bosonic neutral zero modes aµ and the fermionic ones MA

and λA. All the relevant components of these zero modes are lifted by the VEV of the

zero mode s′21 exactly in the same way as the VEV for Φ′
21 lifts the gauge fields and the

gaugini superpartners of the fields which become massive. For instance, the components

M11 − M22, M ′
11 − M ′

22, M ′
21 and M12 will be lifted through the couplings in the last two

terms in the first line of (3.2). Similarly, the components λ11 − λ22, λ′
11 − λ′

22, λ′
12 and λ21

will get a mass through the couplings in the last two terms in the first line of (3.4). Note

that this too implies that the ADHM limit has to be taken in such a way that these mass

terms are not washed away. Eventually, the first term in the first line of (3.2) gives a mass

to the combination aµ11 − aµ22, leaving the center-of-mass bosonic zero modes as the ones

relevant for the instantons in the N = 4 theory.6

As a last routine check, one can reexpress the last two lines of (3.2) in terms of the

zero modes that have been kept and recover the N = 4 expression.

We have thus addressed in this section all the subtleties related to the higgsing proce-

dure in the instanton sector which are already present when one is going from one orbifold

singularity to another. In the following section we can thus address the additional features

that appear when one exits the realm of orbifold singularities.

5. Higgsing C3/Z2 × Z2 to the suspended pinch point and further

We now address the first instance of higgsing to a non-orbifold toric geometry, where it is

less direct to compute the spectrum and action by perturbative methods.

There is a major difference between orbifold and non-orbifold (toric) quivers, in the

sense that orbifold quivers are conformal at the classical and perturbative level, while

the non-orbifold quivers are typically non-conformal classically (there are terms higher

than cubic in the superpotential) but possess a non-trivial superconformal fixed point at

finite coupling. Hence non orbifold quivers are defined by the classical field content and

superpotential up to this RG flow to the IR fixed point. We conjecture here that the

structure of the instanton moduli does not change along this flow. That this is a consistent

thing to do is checked by higgsing back to some other orbifold quiver, and recovering the

spectrum and couplings computed in perturbation theory.

We will start from the C
3/Z2 × Z2 four node quiver, and higgs it to the Suspended

Pinch Point (SPP) three node quiver. Then we will further higgs the latter to the previously

discussed C
2/Z2 two node quiver, as a consistency check. We will also higgs the SPP to the

Conifold quiver, to gain confidence in the structure of the moduli action in the non-orbifold

case. Consistency is again checked by further higgsing the Conifold to recover the N = 4

theory.

6The auxiliary terms Da are already massive. The ones which are related to aµ zero modes that have

become massive can be integrated out trivially by setting them to zero.
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Note that the only non generic feature of the quiver gauge theories discussed in this

section is that they are non-chiral. We will address the more general chiral theories later

on, but we anticipate that there will be no additional features as far as the construction of

the instanton action is concerned.

We begin by concisely reviewing the structure of the C
3/Z2 × Z2 quiver gauge theory

and of its instanton zero modes, see [49, 66]. (This orbifold has been recently investigated

from the point of view of string phenomenology in [67]). As in [21], the orbifold is taken as

g1 : (z1, z2, z3) → (z1,−z2,−z3) and g2 : (z1, z2, z3) → (−z1, z2,−z3), with the representa-

tion on the Chan-Paton indices being γ(g1) = σ3 ⊗ 1 and γ(g2) = 1⊗ σ3. Then, the gauge

fields and the 3 matter fields are given by

Aµ =











Aµ
11 0 0 0

0 Aµ
22 0 0

0 0 Aµ
33 0

0 0 0 Aµ
44











, Φ1 =











0 Φ12 0 0

Φ21 0 0 0

0 0 0 Φ34

0 0 Φ43 0











,

Φ2 =











0 0 Φ13 0

0 0 0 Φ24

Φ31 0 0 0

0 Φ42 0 0











, Φ3 =











0 0 0 Φ14

0 0 Φ23 0

0 Φ32 0 0

Φ41 0 0 0











. (5.1)

As already discussed in full generality, in the instanton sector si,M i, λi, µ
i, µ̄i acquire

the same structure as Φi, whereas aµ,Dc, ω, ω̄,M4, λ4, µ
4, µ̄4 are all block diagonal as Aµ.

The superpotential for the C
3/Z2 × Z2 quiver is simply

WZ2×Z2
= Φ31Φ12Φ23 − Φ31Φ14Φ43 − Φ13Φ32Φ21 + Φ13Φ34Φ41

+Φ42Φ21Φ14 − Φ42Φ23Φ34 − Φ24Φ41Φ12 + Φ24Φ43Φ32 . (5.2)

We can now see what happens if we give a VEV such as

Φ14 = m. (5.3)

This requires the condition N1 = N4 = N and breaks the two gauge groups corresponding

to nodes 1 and 4 to the diagonal subgroup,

SU(N)1 × SU(N)4 → SU(N)(14) . (5.4)

The chiral superfield Φ41 will thereby transform in the adjoint representation of SU(N)(14).

We immediately see that the fields Φ31, Φ43, Φ42 and Φ21 become massive. One should

integrate them out through their F-flatness equations, which read:

Φ31 =
1

m
Φ32Φ24, Φ43 =

1

m
Φ12Φ23,

Φ42 =
1

m
Φ13Φ32, Φ21 =

1

m
Φ23Φ34 . (5.5)

Inserting these values back into (5.2) gives us the SPP superpotential,

WSPP =
1

m
Φ24Φ12Φ23Φ32 −

1

m
Φ13Φ32Φ23Φ34 + Φ13Φ34Φ41 − Φ24Φ41Φ12 (5.6)
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Figure 5: The SPP theory higgsed down from the Z2 × Z2 theory.
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Figure 6: The Z2 theory higgsed down from the SPP theory.

where all the remaining fields (except for Φ41) transform in bifundamental representations

of two of the factors in the gauge group SU(N)(14) × SU(N2) × SU(N3), see figure 5.

We can continue with this procedure and obtain the quiver gauge theory for a Z2

orbifold if we start from the SPP theory and give an additional VEV to the chiral superfield

Φ32,

Φ32 = m . (5.7)

This means that we have the condition N3 = N2 = M and that we “pinch” the two gauge

groups corresponding to nodes 2 and 3 together,

SU(M)2 × SU(M)3 → SU(M)(23) . (5.8)

As before, the chiral superfield Φ23 will now transform in the adjoint representation of

SU(M)(23). We see from (5.6) that (5.7) does not induce any new mass terms, but gives

us the Z2 superpotential, (same as (4.2) upon relabeling)

WZ2
= Φ24Φ12Φ23 − Φ13Φ23Φ34 + Φ13Φ34Φ41 − Φ24Φ41Φ12 (5.9)

where Φ12, Φ13 are in the (�,�) of the gauge group SU(N)(14) × SU(M)(23), while Φ24,

Φ34 are in the (�,�) and Φ41, Φ23 are in the adjoint of the respective gauge groups, see

figure 6.

To get the conifold gauge theory, we start again from the SPP theory but now we

instead give a VEV to the chiral superfield Φ34,

Φ34 = m. (5.10)
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Figure 8: The N = 4 theory higgsed down from the Conifold theory.

This implies the condition N1 = N4 = N3 = N , such that the three gauge groups corre-

sponding to nodes 1, 3 and 4 now become

SU(N)1 × SU(N)3 × SU(N)4 → SU(N)(134) . (5.11)

We see from (5.6) that (5.10) induces a mass term for the bifundamental chiral superfield

Φ13 and the adjoint field Φ41. Hence, we solve for these fields and get the following

expressions,

Φ13 =
1

m
Φ12Φ24, Φ41 =

1

m
Φ32Φ23 . (5.12)

Inserting (5.10) and (5.12) into (5.6) yields the superpotential for the conifold,

Wcon =
1

m
Φ12Φ23Φ32Φ24 −

1

m
Φ12Φ24Φ32Φ23 (5.13)

where Φ12, Φ32 are in the (�,�) of the gauge group SU(N)(134) × SU(N2), Φ24, Φ23 are in

the (�,�) and there are no more adjoint fields, see figure 7.

From here, giving a VEV to, say, Φ24 = m, leads straightforwardly to the N = 4

theory and its cubic superpotential, see figure 8.

All the above is of course standard, but we will now see how this higgsing pattern

extends to the instanton sector.

Let us consider our first non-trivial step out of the orbifold realm. As reviewed in the

previous section, in the absence of any other field acquiring a VEV, the effect that Φ14 = m

would produce is to give a mass to both pairs of bosonic charged moduli ω11, ω̄11 and ω44,

ω̄44. We know that in order to lift only one combination of these two pairs of zero modes,

we need to turn on the VEV

s14 = −m. (5.14)
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We will then have

S2 ⊃ 1

2

(

ω̄11Φ14 + s14ω̄44

)(

Φ†
41ω11 + ω44s

†
41

)

+
1

2

(

ω̄44Φ
†
41 + s†41ω̄11

)(

Φ14ω44 + ω11s14

)

= |m|2(ω̄11 − ω̄44)(ω11 − ω44). (5.15)

We thus see that we can set ω̄11 = ω̄44 and ω11 = ω44. The action coupling the bosonic

charged zero modes to the matter fields and to the neutral bosonic zero modes is obtained

as follows. We see that if we replace the fields that we have integrated out (5.5) by their

values in the action for the orbifold zero modes, we would get a series of terms which are

quartic in the matter fields and have a 1
|m|2 prefactor. Similarly, we know that because

of the F-terms in (3.4) the zero modes s31, s43, s42 and s21 will be integrated out, with

expressions such as s31 = − 1
m

s32s24. Hence there would also be terms quartic in the si, and

terms such as ω̄ΦΦωs†s†. However, all of these terms have the same 1
|m|2 prefactor, and we

will assume, based on consistency with further higgsing, that these terms are suppressed

due to the RG flow that essentially decouples the massive modes (both in the matter and

in the instanton sectors).

Hence, we can write the following action:

Sω
SPP =

(

ω̄11Φ12 + s12ω̄22

)(

Φ†
21ω11 + ω22s

†
21

)

+
(

ω̄22Φ
†
21 + s†21ω̄11

)(

Φ12ω22 + ω11s12

)

+
(

ω̄11Φ13 + s13ω̄33

)(

Φ†
31ω11 + ω33s

†
31

)

+
(

ω̄33Φ
†
31 + s†31ω̄11

)(

Φ13ω33 + ω11s13

)

+
(

ω̄22Φ24 + s24ω̄11

)(

Φ†
42ω22 + ω11s

†
42

)

+
(

ω̄11Φ
†
42 + s†42ω̄22

)(

Φ24ω11 + ω22s24

)

+
(

ω̄33Φ34 + s34ω̄11

)(

Φ†
43ω33 + ω11s

†
43

)

+
(

ω̄11Φ
†
43 + s†43ω̄33

)(

Φ34ω11 + ω33s34

)

+
(

ω̄22Φ23 + s23ω̄33

)(

Φ†
32ω22 + ω33s

†
32

)

+
(

ω̄33Φ
†
32 + s†32ω̄22

)(

Φ23ω33 + ω22s23

)

+
(

ω̄33Φ32 + s32ω̄22

)(

Φ†
23ω33 + ω22s

†
23

)

+
(

ω̄22Φ
†
23 + s†23ω̄33

)(

Φ32ω22 + ω33s32

)

+
(

ω̄11Φ41 + s41ω̄11

)(

Φ†
14ω11 + ω11s

†
14

)

+
(

ω̄11Φ
†
14 + s†14ω̄11

)(

Φ41ω11 + ω11s41

)

(5.16)

In presenting the above actions and in all the following ones we find ourself facing a

notational dilemma. The higgsing procedure removes some of the nodes making some of

the indices obsolete. One could relabel the indices at every step, for instance in the case

under consideration letting 4 → 1 everywhere. The advantage of doing this is that the

instanton action for each model looks more intelligible but the disadvantage is that this

relabeling makes it difficult to follow the chain of higgsings from one model to another. We

choose not to relabel the fields at this stage and ask the reader to keep track of which nodes

are identified. We will however still set ω44 = ω11 etc. because these are two previously

distinct moduli fields that are now identified by the higgsing procedure.

As we turn to consider the charged fermionic zero modes, we see that the VEVs for

Φ14 and s14 yield the following mass terms:

S2 ⊃ m∗[µ̄14(µ11 −µ44) + (µ̄11 − µ̄44)µ14

]

+ m
(

µ̄21µ42 + µ̄42µ21 − µ̄31µ43 − µ̄43µ31

)

(5.17)

As in the previous section, the complete action coupling µ, µ̄ to Φ and s will contain other

terms involving the above massive zero modes. These would lead to very complicated
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expressions mixing the holomorphic/anti-holomorphic components. Again, consistency is

obtained if and only if we decouple all terms with a 1
|m|2 prefactor, thus preserving the

holomorphic/anti-holomorphic serparation. The remaining terms are computed by setting

in turn 1
m

= 0 and 1
m∗ = 0 and reinstating the finite value of m in the end, after the

integration.

If we set 1
m

= 0, and thus set exactly to zero all the modes which have a mass m, we

observe that no couplings remain which involve µ14 or µ̄14. Hence, µ11 −µ44 and µ̄11 − µ̄44

act like Lagrange multipliers and integrating out the modes with a mass m∗ is equivalent

to setting to zero all terms in which they appear.

On the other hand setting 1
m∗ = 0, we set exactly to zero the modes with mass m∗, but

this still leaves terms which mix the remaining massless modes with the modes of mass m.

Hence integrating out the latter yields non trivial expressions. Yet it is remarkable that

these expressions only contain holomorphic dependence on the fields Φ and s.

It is easy to see that because of the structure of the terms involving Φ† and s†, and

due to the previous remarks, no terms linear in 1
m∗ will be generated at all. Hence, the

part of the action coupling the fermionic charged zero modes to the anti-holomorphic fields

will remain cubic:

Sholo
SPP =

(

µ̄41Φ
†
14 + µ̄12Φ

†
21 + µ̄13Φ

†
31

)

µ11 +
(

µ̄23Φ
†
32 + µ̄24Φ

†
42

)

µ22

+
(

µ̄32Φ
†
23 + µ̄34Φ

†
43

)

µ33 +
(

s†14µ̄41 + s†42µ̄24 + s†43µ̄34

)

µ11

+
(

s†21µ̄12 + s†23µ̄32

)

µ22 +
(

s†31µ̄13 + s†32µ̄23

)

µ33

−µ̄11

(

Φ†
14µ41 + Φ†

42µ24 + Φ†
43µ34

)

− µ̄22

(

Φ†
21µ12 + Φ†

23µ32

)

−µ̄33

(

Φ†
31µ13 + Φ†

32µ23

)

− µ̄11

(

µ41s
†
14 + µ12s

†
21 + µ13s

†
31

)

−µ̄22

(

µ24s
†
42 + µ23s

†
32

)

− µ̄33

(

µ34s
†
43 + µ32s

†
23

)

(5.18)

The expressions for the charged fermionic zero modes of mass m which have been integrated

out are

µ31 =
1

m

(

Φ32µ24 − µ32s24

)

, µ̄31 =
1

m

(

µ̄32Φ24 − s32µ̄24

)

,

µ43 =
1

m

(

Φ12µ23 − µ12s23

)

, µ̄43 =
1

m

(

µ̄12Φ23 − s12µ̄23

)

,

µ42 =
1

m

(

Φ13µ32 − µ13s32

)

, µ̄42 =
1

m

(

µ̄13Φ32 − s13µ̄32

)

,

µ21 =
1

m

(

Φ23µ34 − µ23s34

)

, µ̄21 =
1

m

(

µ̄23Φ34 − s23µ̄34

)

. (5.19)

One can actually replace all the terms where the above massive modes appear by substitut-

ing the above expressions in the mass terms of the second line of (5.17). This will clearly

lead to terms like µ̄ΦΦµ, µ̄µss and µ̄Φµs. Other terms like µ̄ΦΦµ and µ̄µss are generated

when replacing the expressions such as (5.5) for the Φ and s modes that are also integrated

out. All in all, we arrive at the following expression for the holomorphic couplings of the
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fermionic charged zero modes:

Sholo
SPP =

1

m
(µ̄24µ12s23s32 − µ̄24Φ12µ23s32 + µ̄24Φ12Φ23µ32 + µ̄12µ23s32s24

−µ̄12Φ23µ32s24 + µ̄12Φ23Φ32µ24 + µ̄23µ32s24s12 − µ̄23Φ32µ24s12

+µ̄23Φ32Φ24µ12 + µ̄32µ24s12s23 − µ̄32Φ24µ12s23 + µ̄32Φ24Φ12µ23)

− 1

m
(µ̄13µ32s23s34 − µ̄13Φ32µ23s34 + µ̄13Φ32Φ23µ34 + µ̄32µ23s34s13

−µ̄32Φ23µ34s13 + µ̄32Φ23Φ34µ13 + µ̄23µ34s13s32 − µ̄23Φ34µ13s32

+µ̄23Φ34Φ13µ32 + µ̄34µ13s32s23 − µ̄34Φ13µ32s23 + µ̄34Φ13Φ32µ23)

−µ̄13µ34s41 + µ̄13Φ34µ41 − µ̄34µ41s13 + µ̄34Φ41µ13

−µ̄41µ13s34 + µ̄41Φ13µ34 + µ̄24µ41s12 − µ̄24Φ41µ12

+µ̄41µ12s24 − µ̄41Φ12µ24 + µ̄12µ24s41 − µ̄12Φ24µ41 (5.20)

The rules described in section 2 should be clear by comparing the above action with

the expression for the superpotential (5.6). A term of order four in the superpotential gives

rise to twelve terms in the holomorphic instanton action, obtained by inserting µ̄ and µ in

4 × 3 ways and closing the trace with Φ or s accordingly. Similarly, each cubic term gives

rise to 3 × 2 terms.

At this point we are ready to make a consistency check. If the procedure we followed

is correct, by further higgsing Φ32 = −s32 = m we should recover the instanton action for

the C
2/Z2 singularity which is known by perturbative means. It is very pleasing to see that

this is indeed the case. The bosonic part of the instanton action is easily handled. Just like

we did in going to the SPP, the further higgsing gives a mass to the difference ω33 − ω22

and ω̄33 − ω̄22, allowing us to set ω33 = ω22 and ω̄33 = ω̄22. Since no new mass term for

the chiral superfields is induced in this process, we simply make this identification in the

bosonic action (5.16) to obtain the well known orbifold result. Similarly, higgsing in the

anti-holomorphic part of the action gives a mass to µ32, µ̄32, and to the linear combinations

µ33 − µ22 and µ̄33 − µ̄22 allowing us to set them to zero in both the anti-holomorphic and

holomorphic fermionic actions (5.18) and (5.20). More interestingly, the fields Φ32 and s32

appear only in the quartic part of the holomorphic action (5.20) and their VEV reduces

these terms to the cubic ones expected in the orbifold case. Not only that, this last fact

indicates that the quartic terms must be present in the SPP case since without them we

would not recover all the couplings for the C
2/Z2 orbifold.

Now that we trust the action for SPP we can make another higgsing, this time to the

conifold theory. The conifold case is quite dramatic in that the only allowed holomorphic

terms in the fermionic action are quartic and if they were not present there would be no

hope of recovering the instanton action of N = 4 by further higgsing. On the other hand, by

keeping these terms, one easily sees that further higgsing reduces to the desired action. To

summarize this step, recall that we obtained (5.13) from (5.6) by higgsing Φ34 = −s34 = m.

Let us focus on the fermionic part of the action, since the bosonic part always works in

the same way (here, ω11 = ω33 and ω̄11 = ω̄33). From the anti-holomorphic piece we have

µ34 = 0 µ̄34 = 0, µ11 = µ33 and µ̄11 = µ̄33, whereas from the holomorphic piece we can
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solve:

µ13 =
1

m

(

Φ12µ24 − µ12s24

)

, µ̄13 =
1

m

(

µ̄12Φ24 − s12µ̄24

)

,

µ41 =
1

m

(

Φ32µ23 − µ32s23

)

, µ̄41 =
1

m

(

µ̄32Φ23 − s32µ̄23

)

. (5.21)

Replacing these values in the fermionic action we obtain the complete instanton action for

the conifold:

Sω
con =

(

ω̄11Φ12 + s12ω̄22

)(

Φ†
21ω11 + ω22s

†
21

)

+
(

ω̄22Φ
†
21 + s†21ω̄11

)(

Φ12ω22 + ω11s12

)

+
(

ω̄11Φ32 + s32ω̄22

)(

Φ†
23ω11 + ω22s

†
23

)

+
(

ω̄22Φ
†
23 + s†23ω̄11

)(

Φ32ω22 + ω11s32

)

+
(

ω̄22Φ23 + s23ω̄11

)(

Φ†
32ω22 + ω11s

†
32

)

+
(

ω̄11Φ
†
32 + s†32ω̄22

)(

Φ23ω11 + ω22s23

)

+
(

ω̄22Φ24 + s24ω̄11

)(

Φ†
42ω22 + ω11s

†
42

)

+
(

ω̄11Φ
†
42 + s†42ω̄22

)(

Φ24ω11 + ω22s24

)

(5.22)

Sholo
con =

(

µ̄12Φ
†
21 + µ̄32Φ

†
23

)

µ11 +
(

µ̄23Φ
†
32 + µ̄24Φ

†
42

)

µ22 +
(

s†32µ̄23 + s†42µ̄24

)

µ11

+
(

s†23µ̄32 + s†21µ̄12

)

µ22 − µ̄11

(

Φ†
32µ23 + Φ†

42µ24

)

− µ̄22

(

Φ†
21µ12 + Φ†

23µ32

)

−µ̄11

(

µ12s
†
21 + µ32s

†
23

)

− µ̄22

(

µ23s
†
32 + µ24s

†
42

)

(5.23)

Sholo
con =

1

m

(

µ̄12µ23s32s24 − µ̄12Φ23µ32s24 + µ̄12Φ23Φ32µ24 + µ̄12Φ24µ32s23

−µ̄12Φ24Φ32µ23 − µ̄23µ12s24s32 + µ̄23µ32s24s12 + µ̄23Φ12µ24s32

−µ̄23Φ12Φ24µ32 + µ̄23Φ32Φ24µ12 − µ̄23Φ32µ24s12 + µ̄24µ12s23s32

−µ̄24µ32s23s12 − µ̄24Φ12µ23s32 + µ̄24Φ12Φ23µ32 + µ̄24Φ32µ23s12

−µ̄24Φ32Φ23µ12 − µ̄32µ23s12s24 + µ̄32µ24s12s23 + µ̄32Φ23µ12s24

−µ̄32Φ23Φ12µ24 − µ̄32Φ24µ12s23 + µ̄32Φ24Φ12µ23 − µ̄12µ24s32s23

)

(5.24)

To test this result, one can make the further higgsing to the N = 4 theory by letting

Φ24 = −s24 = m. Again, no new chiral superfield or neutral mode need to be integrated

out and simply setting to zero the charged zero modes that acquire a mass: ω44 − ω22,

ω̄44 − ω̄22, µ44 −µ22, µ̄44 − µ̄22, µ24, µ̄24 yields the N = 4 expression reviewed in section 3.

Notice that no masses are generated in the holomorphic sector (5.24) but this sector is

crucial for the recovery of the last term in (3.3).

6. Recovering the ADS superpotential from the non-holomorphic cou-

plings

We now make a short digression to show that in order to recover the ADS superpotential

in the simplest cases, the couplings of the instanton moduli to the non-holomorphic matter

fields7 must be of the form found above. Hence we are building up confidence in the

procedure used to obtain the actions in the previous section, and will be able to apply it

systematically to other quivers. This is actually a first indication that the rules proposed

7Recall that the above distinction is meaningful since the instanton essentially chooses one chirality over

the other.
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in the beginning of this paper are consistent with the effects that have to be described by

instantons in quiver gauge theories.

According to the rules inferred from the previous (and subsequent) examples, let us

compute the spectrum of zero modes and their couplings when there is one fractional

instanton sitting on a node corresponding to a gauge group, i.e. the instanton wraps a

cycle which is also wrapped by some space-filling branes. The number of space-filling

branes determines the rank of the gauge group at the associated node. Note that as far as

space-filling branes are concerned, in order to cancel gauge anomalies, other nodes might

necessarily need to be turned on (this is of course true only for chiral quivers). This is not

true for the instantonic branes since, roughly, the tadpole charge can escape through the

space-time directions. Hence, there are no restrictions in considering a single instanton on

a node, even if the quiver is chiral (we will consider this generic case in this section).8

We are considering a single instanton, hence in the neutral zero mode sector we will

have no s moduli. If we denote by a the index of the node with an instanton, we will have

only aµ
aa, Maa and λaa zero modes in this sector. Since there is both a gauge group and an

instanton at node a, we will have a pair of charged massless bosonic modes ωaa and ω̄aa,

as well as the charged fermionic zero modes µaa and µ̄aa. In addition, to each matter field

connecting to node a, both incoming Φba and outgoing Φac (with b and c running on the

nodes connected to node a by incoming and outgoing arrows respectively), there will be

charged fermionic zero modes µba and µ̄ac.

The couplings in which these modes will necessarily be involved are the following:

Sω = ω̄aa

(

∑

c

ΦacΦ
†
ca +

∑

b

Φ†
abΦba

)

ωaa, (6.1)

Sholo
µ =

∑

b

µ̄aaΦ
†
abµba −

∑

c

µ̄acΦ
†
caµaa. (6.2)

Additionally, they can also be involved in holomorphic couplings, if there are corresponding

superpotential terms:

Sholo
µ = µ̄acΦcd . . . Φebµba, (6.3)

where the number of matter fields in the couplings above is given by the order of the

corresponding superpotential term minus two.

We now integrate over all of the zero modes. The integral over the neutral zero modes

aµ
aa and Maa just gives the integral over chiral superspace that tells us that we are computing

a superpotential term. The integral over the λaa zero modes brings down a fermionic delta

function implementing the constraint

µ̄aaωaa + ω̄aaµaa = 0. (6.4)

If we take the gauge group at node a to be of rank N , then all the zero modes in the

equation above have actually N components over which we must sum (the ω and ω̄ are

additionally Lorentz spinors, so that there are in total two fermionic constraints).

8We thank Matteo Bertolini and Angel Uranga for discussions on these issues.
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Let us now focus on the fermionic integration:

∫

[Dµ̄aa]
N [Dµaa]

N [Dµ̄ac]
N ′

[Dµba]
N ′

(µ̄aaωaa + ω̄aaµaa)
2e−Sholo

µ −Sholo
µ , (6.5)

where N ′ is the sum of the ranks of the U(Nb) and U(Nc) gauge groups connected with node

a. The two sums must coincide because of anomaly cancellation, so that N ′ is essentially

the number of flavors of the U(N) gauge theory at node a.

Performing first the integration over the µ̄aa and µaa moduli, we see that a pair is

soaked up by the fermionic constraint, while the others are soaked up by pulling down

2(N −1) times Sholo
µ . Together with 2(N −1) powers of anti-holomorphic matter fields, we

also bring down 2(N −1) zero modes of the type µba and µ̄ac. It is clear that if N ′ < N −1,

the contribution will then vanish.

If on the other hand we concentrate on the case N ′ = N −1, where the standard gauge

theory analysis [47] tells us that there should be an effective superpotential generated by

a one instanton contribution, we immediately see that all the other zero modes µba and

µ̄ac are also exactly soaked up in this process. This means that the terms in Sholo
µ are

irrelevant to this contribution.9 Thus, the integration over fermionic moduli leaves us

with an expression with 2N ′ powers of the anti-holomorphic flavors of the SU(N) gauge

group. The expression we get is the same that appears in the ADHM construction [68] (see

also [69, 70]) after integrating over the fermionic moduli

∫

d4xd2θ det(Φ†
caΦ

†
ab). (6.6)

The integration over the bosonic charged zero modes is again the standard ADHM one,

derived in a stringy context in [17]. Hence, the anti-holomorphic pieces in the numerator

and in the denominator cancel, leaving us with the familiar ADS contribution

∫

d4xd2θ
1

det(ΦbaΦac)
∝
∫

d4xd2θWADS. (6.7)

As it is clear from the above, this is completely general and applies also to chiral quivers

such as the ones considered in the next section. It is also a consistency check for the zero

mode actions that we computed before, and for the rules explained at the beginning of the

paper. In particular, it is crucial that the couplings of the charged bosonic zero modes are

all proportional to Φ†Φ, and the couplings of the charged fermionic zero modes to the anti-

holomorphic sector are all linear in Φ†. Had we kept the subleading terms proportional to

higher powers of Φ†, we would be in a situation where the instantons on a node occupied by

a gauge theory would yield a contribution in disagreement with the one computed through

the gauge theory itself.

We thus take the results of this section as a further confirmation that we are indeed

taking the correct procedure to perform the higgsing in the instanton sector.

9When N ′ ≥ N , the terms in Sholo

µ might start playing a non-trivial role. This would be related to

gauge theory instantons in theories with additional singlet matter fields coupling to the flavors. The study

of such effects is beyond the scope of the present paper.
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7. Higgsing C3/Z3 × Z3 to toric del Pezzo’s

Finally we discuss the higgsing from an orbifold quiver to the del Pezzo toric quivers known

as dP1, dP2 and dP3 which have been often considered in recent research on quiver gauge

theories, since they contain basically all the features the latter can display.

There are two reasons why we want to look at these cases in some details. The first

is that models based on these singularities have attracted some attention in the context of

dynamical supersymmetry breaking and might even yield phenomenologically interesting

models. The second is that all the models considered so far, obtained from the resolution of

C
3/Z2 ×Z2 are non chiral and one might wonder if the procedure generalizes to the (more

interesting) chiral theories. We will see that it does, and hopefully this should convince

the reader that the recipe we gave in the introduction on how to build the instanton action

directly from the quiver data is quite general, so that one need not go through the (rather

painful) higgsing procedure for even larger quivers.

Schematically, the higgsing procedure we will follow is represented by the chain:

C
3/Z3 × Z3

3,12→ dP3
1,0→ dP2

1,0→ dP1
1,0→ C

3/Z3, (7.1)

where the numbers above the arrows represent the numbers of chiral superfields (and

neutral bosonic modes) acquiring a VEV and the number of chiral superfields (and neutral

bosonic modes) that need to be integrated out as a consequence of this.10 We see that

most of the work is concentrated in the first step which we now describe.

We begin by writing the expression for the superpotential of the C
3/Z3 × Z3 theory:

WZ3×Z3
= −Φ13Φ34Φ41 + Φ15Φ54Φ41 − Φ15Φ52Φ21 − Φ26Φ63Φ32

+Φ34Φ46Φ63 + Φ26Φ65Φ52 + Φ17Φ72Φ21 − Φ46Φ67Φ74

+Φ28Φ83Φ32 − Φ48Φ85Φ54 − Φ28Φ87Φ72 + Φ48Φ87Φ74

+Φ13Φ39Φ91 − Φ17Φ79Φ91 − Φ59Φ96Φ65 + Φ67Φ79Φ96

−Φ39Φ98Φ83 + Φ59Φ98Φ85. (7.2)

To go to the dP3 model we need to remove three nodes from the quiver diagram,

that is higgs three chiral superfields. We follow [51] and higgs Φ83 = Φ79 = Φ41 = m.11

Substituting into (7.2) we see that this gives a mass to twelve fields that need to be

integrated out:

Φ32 =
1

m
Φ87Φ72, Φ28 =

1

m
Φ26Φ63, Φ34 =

1

m
Φ39Φ91,

Φ13 =
1

m
Φ46Φ63, Φ54 =

1

m
Φ52Φ21, Φ15 =

1

m
Φ48Φ85,

Φ91 =
1

m
Φ72Φ21, Φ17 =

1

m
Φ13Φ39, Φ96 =

1

m
Φ74Φ46,

Φ67 =
1

m
Φ65Φ59, Φ98 =

1

m
Φ91Φ13, Φ39 =

1

m
Φ85Φ59 , (7.3)
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Figure 9: The dP3 theory higgsed down from the Z3 × Z3 theory.

see figure 9. Note that some fields are expressed in terms of other fieds which are themselves

integrated out. This results in some expressions being quartic in the left-over matter fields:

Φ34 =
1

m3
Φ85Φ59Φ72Φ21,

Φ17 =
1

m3
Φ46Φ63Φ85Φ59,

Φ98 =
1

m3
Φ72Φ21Φ46Φ63. (7.4)

The resulting superpotential for the dP3 model is thus given by

WdP3
=

1

m3

(

Φ21Φ46Φ63Φ85Φ59Φ72

)

− 1

m

(

Φ46Φ65Φ59Φ74 + Φ21Φ48Φ85Φ52 + Φ26Φ63Φ87Φ72

)

+Φ26Φ65Φ52 + Φ48Φ87Φ74. (7.5)

The action for the charged bosonic zero modes is obtained, as before, by setting to

zero the massive modes, i.e. identifying ω88 = ω33, ω99 = ω77, ω44 = ω11, and dropping

the 1/|m|2 terms that we claim must be suppressed in the IR limit in order to recover the

10One could further higgs the C
3/Z3 to the conifold case providing yet a consistency check.

11As it is well known, the higher del Pezzo’s possess more than one “toric phase”. We will limit ourselves

here to considering arguably the most natural one for dP3 denoted by model I in [51].
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right actions by further higgsing. This results in the following rather unwieldy expression:

Sω
dP3

=
(

ω̄22Φ26 + s26ω̄66

)(

Φ†
62ω22 + ω66s

†
62

)

+
(

ω̄66Φ
†
62 + s†62ω̄22

)(

Φ26ω66 + ω22s26

)

(

ω̄55Φ52 + s52ω̄22

)(

Φ†
25ω55 + ω22s

†
25

)

+
(

ω̄22Φ
†
25 + s†25ω̄55

)(

Φ52ω22 + ω55s52

)

(

ω̄66Φ65 + s65ω̄55

)(

Φ†
56ω66 + ω55s

†
56

)

+
(

ω̄55Φ
†
56 + s†56ω̄66

)(

Φ65ω55 + ω66s65

)

(

ω̄11Φ46 + s46ω̄66

)(

Φ†
64ω11 + ω66s

†
64

)

+
(

ω̄66Φ
†
64 + s†64ω̄11

)(

Φ46ω66 + ω11s46

)

(

ω̄55Φ59 + s59ω̄77

)(

Φ†
95ω55 + ω77s

†
95

)

+
(

ω̄77Φ
†
95 + s†95ω̄55

)(

Φ59ω77 + ω55s59

)

(

ω̄77Φ74 + s74ω̄11

)(

Φ†
47ω77 + ω11s

†
47

)

+
(

ω̄11Φ
†
47 + s†47ω̄77

)(

Φ74ω11 + ω77s74

)

(

ω̄22Φ21 + s21ω̄11

)(

Φ†
12ω22 + ω11s

†
12

)

+
(

ω̄11Φ
†
12 + s†12ω̄22

)(

Φ21ω11 + ω22s21

)

(

ω̄11Φ48 + s48ω̄33

)(

Φ†
84ω11 + ω33s

†
84

)

+
(

ω̄33Φ
†
84 + s†84ω̄11

)(

Φ48ω33 + ω11s48

)

(

ω̄33Φ85 + s85ω̄55

)(

Φ†
58ω33 + ω55s

†
58

)

+
(

ω̄55Φ
†
58 + s†58ω̄33

)(

Φ85ω55 + ω33s85

)

(

ω̄66Φ63 + s63ω̄33

)(

Φ†
36ω66 + ω33s

†
36

)

+
(

ω̄33Φ
†
36 + s†36ω̄66

)(

Φ63ω33 + ω66s63

)

(

ω̄77Φ72 + s72ω̄22

)(

Φ†
27ω77 + ω22s

†
27

)

+
(

ω̄22Φ
†
27 + s†27ω̄77

)(

Φ72ω22 + ω77s72

)

(

ω̄33Φ87 + s87ω̄77

)(

Φ†
78ω33 + ω77s

†
78

)

+
(

ω̄77Φ
†
78 + s†78ω̄33

)(

Φ87ω77 + ω33s87

)

.

(7.6)

Expression (7.6) can be understood by noticing that to every chiral field surviving the

higgsing procedure there corresponds a line in the expression, coupling this fields (and the

corresponding neutral mode) to the two charged bosonic zero modes emanating from the

nodes connected by the chiral field:

(

ω̄bbΦba + sbaω̄aa

)(

Φ†
abωbb + ωaas

†
ab

)

+
(

ω̄aaΦ
†
ab + s†abω̄bb

)(

Φbaωaa + ωbbsba

)

(7.7)

Expression (7.6) is nothing but a repetition of (7.7) for each chiral field, where in some

places we have also replaced the bosonic modes that have been integrated out to avoid

redundancy, (e.g. in the fourth line of (7.6) we write ω11 instead of ω44).

In the fermionic action, the following zero modes are made massive by the higgsing

procedure. From the anti-holomorphic piece:

µ88 − µ33, µ99 − µ77, µ44 − µ11, µ83, µ79, µ41,

µ̄88 − µ̄33, µ̄99 − µ̄77, µ̄44 − µ̄11, µ̄83, µ̄79, µ̄41, (7.8)

and from the holomorphic piece:

µ13, µ34, µ15, µ54, µ17, µ91, µ28, µ32, µ39, µ98, µ67, µ96,

µ̄13, µ̄34, µ̄15, µ̄54, µ̄17, µ̄91, µ̄28, µ̄32, µ̄39, µ̄98, µ̄67, µ̄96. (7.9)

It is easy to see what fields become massive in the holomorphic case by looking at the

superpotential (7.2) and recalling that the holomorphic actions for the fermionic zero modes

has the same structure. Thus, the fermions that become massive are those with the same

index structure of the fields in (7.3). What is more interesting is that, integrating out the

modes in the holomorphic and anti-holomorphic action separately (in order to preserve the

holomorphic/anti-holomorphic decoupling) sets the fields in (7.8) to zero and solves the
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ones in (7.9) in terms of purely holomorphic quantities. Substituting back into the orbifold

action and taking the scaling limit discussed previously we obtain the following complete

action for the fermionic charged zero modes on the dP3 theory:

Sholo
dP3

=
1

m3

(

µ̄21µ46s63s85s59s72 − µ̄21Φ46µ63s85s59s72 + µ̄21Φ46Φ63µ85s59s72

−µ̄21Φ46Φ63Φ85µ59s72 + µ̄21Φ46Φ63Φ85Φ59µ72 + µ̄46µ63s85s59s72s21

−µ̄46Φ63µ85s59s72s21 + µ̄46Φ63Φ85µ59s72s21 − µ̄46Φ63Φ85Φ59µ72s21

+µ̄46Φ63Φ85Φ59Φ72µ21 + µ̄63µ85s59s72s21s46 − µ̄63Φ85µ59s72s21s46

+µ̄63Φ85Φ59µ72s21s46 − µ̄63Φ85Φ59Φ72µ21s46 + µ̄63Φ85Φ59Φ72Φ21µ46

+µ̄85µ59s72s21s46s63 − µ̄85Φ59µ72s21s46s63 + µ̄85Φ59Φ72µ21s46s63

−µ̄85Φ59Φ72Φ21µ46s63 + µ̄85Φ59Φ72Φ21Φ46µ63 + µ̄59µ72s21s46s63s85

−µ̄59Φ72µ21s46s63s85 + µ̄59Φ72Φ21µ46s63s85 − µ̄59Φ72Φ21Φ46µ63s85

+µ̄59Φ72Φ21Φ46Φ63µ85 + µ̄72µ21s46s63s85s59 − µ̄72Φ21µ46s63s85s59

+µ̄72Φ21Φ46µ63s85s59 − µ̄72Φ21Φ46Φ63µ85s59 + µ̄72Φ21Φ46Φ63Φ85µ59

)

− 1

m

(

µ̄46µ65s59s74 − µ̄46Φ65µ59s74 + µ̄46Φ65Φ59µ74 + µ̄65µ59s74s46

−µ̄65Φ59µ74s46 + µ̄65Φ59Φ74µ46 + µ̄59µ74s46s65 − µ̄59Φ74µ46s65

+µ̄59Φ74Φ46µ65 + µ̄74µ46s65s59 − µ̄74Φ46µ65s59 + µ̄74Φ46Φ65µ59

+µ̄21µ48s85s52 − µ̄21Φ48µ85s52 + µ̄21Φ48Φ85µ52 + µ̄48µ85s52s21

−µ̄48Φ85µ52s21 + µ̄48Φ85Φ52µ21 + µ̄85µ52s21s48 − µ̄85Φ52µ21s48

+µ̄85Φ52Φ21µ48 + µ̄52µ21s48s85 − µ̄52Φ21µ48s85 + µ̄52Φ21Φ48µ85

+µ̄26µ63s87s72 − µ̄26Φ63µ87s72 + µ̄26Φ63Φ87µ72 + µ̄63µ87s72s26

−µ̄63Φ87µ72s26 + µ̄63Φ87Φ72µ26 + µ̄87µ72s26s63 − µ̄87Φ72µ26s63

+µ̄87Φ72Φ26µ63 + µ̄72µ26s63s87 − µ̄72Φ26µ63s87 + µ̄72Φ26Φ63µ87

)

−µ̄26µ65s52 + µ̄26Φ65µ52 − µ̄65µ52s26 + µ̄65Φ52µ26 − µ̄52µ26s65 + µ̄52Φ26µ65

−µ̄48µ87s74 + µ̄48Φ87µ74 − µ̄87µ74s48 + µ̄87Φ74µ48 − µ̄74µ48s87 + µ̄74Φ48µ87

(7.10)

Sholo
dP3

=
(

µ̄46Φ
†
64 + µ̄48Φ

†
84

)

µ11 +
(

µ̄21Φ
†
12 + µ̄26Φ

†
62

)

µ22 +
(

µ̄85Φ
†
58 + µ̄87Φ

†
78

)

µ33

+
(

µ̄52Φ
†
25 + µ̄59Φ

†
95

)

µ55 +
(

µ̄63Φ
†
36 + µ̄65Φ

†
56

)

µ66 +
(

µ̄72Φ
†
27 + µ̄74Φ

†
47

)

µ77

+
(

s†12µ̄21 + s†47µ̄74

)

µ11 +
(

s†25µ̄52 + s†27µ̄72

)

µ22 +
(

s†84µ̄48 + s†36µ̄63

)

µ33

+
(

s†56µ̄65 + s†58µ̄85

)

µ55 +
(

s†62µ̄26 + s†64µ̄46

)

µ66 +
(

s†95µ̄59 + s†78µ̄87

)

µ77

−µ̄11

(

Φ†
12µ21 + Φ†

47µ74

)

− µ̄22

(

Φ†
25µ52 + Φ†

27µ72

)

− µ̄33

(

Φ†
36µ63 + Φ†

84µ48

)

−µ̄55

(

Φ†
56µ65 + Φ†

58µ85

)

− µ̄66

(

Φ†
62µ26 + Φ†

64µ46

)

− µ̄77

(

Φ†
78µ87 + Φ†

95µ59

)

−µ̄11

(

µ46s
†
64 + µ48s

†
84

)

− µ̄22

(

µ21s
†
12 + µ26s

†
62

)

− µ̄33

(

µ85s
†
58 + µ87s

†
78

)

−µ̄55

(

µ52s
†
25 + µ59s

†
95

)

− µ̄66

(

µ63s
†
36 + µ65s

†
56

)

− µ̄77

(

µ72s
†
27 + µ74s

†
47

)

(7.11)

Note that in order to recover all of the 30 sixth order terms above, it is crucial that some

fields have to be substituted by their quartic expressions as in (7.4), and similar expressions

– 26 –



J
H
E
P
0
7
(
2
0
0
8
)
1
2
3

2

3=5=8

2

Φ21

46
74

26

72 52 48

63

65

5987

Φ

Φ

Φ Φ

ΦΦ

Φ Φ

Φ

Φ

1=4

6

7=9

Figure 10: The dP2 theory higgsed down from the dP3 theory.

for the s moduli.

We decided to present the full expression (which is not very practical in itself) because

from now on the reader can easily convince herself that further higgsing yields the expres-

sions for the lower del Pezzo’s. In particular, setting Φ85 = −s85 = m yields one of the

phases of the dP2 theory, whose superpotential is simply obtained by substitution in (7.5)

without the need of integrating anything out:

WdP2
=

1

m2

(

Φ21Φ46Φ63Φ59Φ72

)

− 1

m

(

Φ46Φ65Φ59Φ74 + Φ26Φ63Φ87Φ72

)

+Φ26Φ65Φ52 + Φ48Φ87Φ74 − Φ21Φ48Φ52 , (7.12)

see figure 10. Similarly, substituting the VEVs in the bosonic and fermionic actions one

can easily see that the fields ω88−ω55 and ω̄88− ω̄55 become massive, allowing to eliminate

one of the two elements in favor of the other and (from the anti-holomorphic piece) the

fields

µ85, µ̄85, µ88 − µ55, µ̄88 − µ̄55 (7.13)

become massive and are to be integrated out (set to zero). No further massive field arises

from the holomorphic action and this is of course related to the fact that the structure of

the holomorphic action reflects that of the superpotential.

We spare the reader the explicit expression for the instanton action in the dP2 case

that can be trivially retrieved from the comments above and move to the dP1 model by

further higgsing Φ72 = −s72 = m. Once again, no chiral field acquires a mass and the

superpotential for this (unique) toric phase is

WdP1
=

1

m

(

Φ21Φ46Φ63Φ59 − Φ46Φ65Φ59Φ74

)

−Φ26Φ63Φ87 + Φ26Φ65Φ52 + Φ48Φ87Φ74 − Φ21Φ48Φ52 , (7.14)
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Figure 11: The dP1 theory higgsed down from the dP2 theory.

see figure 11. Just as in the previous step, the instanton action is trivially retrieved by

making the appropriate substitutions:

µ72 = 0, µ̄72 = 0, µ77 = µ22, µ̄77 = µ̄22, ω77 = ω22, ω̄77 = ω̄22 (7.15)

enforcing the integrating out of the massive modes. We simply report the holomorphic

part of the fermionic action for convenience of the reader and because it does have various

applications.

Sholo
dP1

=
1

m

(

µ̄21µ46s63s59 − µ̄21Φ46µ63s59 + µ̄21Φ46Φ63µ59 + µ̄46µ63s59s21

−µ̄46Φ63µ59s21 + µ̄46Φ63Φ59µ21 + µ̄63µ59s21s46 − µ̄63Φ59µ21s46

+µ̄63Φ59Φ21µ46 + µ̄59µ21s46s63 − µ̄59Φ21µ46s63 + µ̄59Φ21Φ46µ63

−µ̄46µ65s59s74 + µ̄46Φ65µ59s74 − µ̄46Φ65Φ59µ74 − µ̄65µ59s74s46

+µ̄65Φ59µ74s46 − µ̄65Φ59Φ74µ46 − µ̄59µ74s46s65 + µ̄59Φ74µ46s65

−µ̄59Φ74Φ46µ65 − µ̄74µ46s65s59 + µ̄74Φ46µ65s59 − µ̄74Φ46Φ65µ59

)

+µ̄26µ63s87 − µ̄26Φ63µ87 + µ̄63µ87s26 − µ̄63Φ87µ26

+µ̄87µ26s63 − µ̄87Φ26µ63 − µ̄26µ65s52 + µ̄26Φ65µ52

−µ̄65µ52s26 + µ̄65Φ52µ26 − µ̄52µ26s65 + µ̄52Φ26µ65

−µ̄48µ87s74 + µ̄48Φ87µ74 − µ̄87µ74s48 + µ̄87Φ74µ48

−µ̄74µ48s87 + µ̄74Φ48µ87 + µ̄21µ48s52 − µ̄21Φ48µ52

+µ̄48µ52s21 − µ̄48Φ52µ21 + µ̄52µ21s48 − µ̄52Φ21µ48 (7.16)

If our chain of derivation is correct, by further higgsing Φ46 = −s46 = m we should

recover the action for the C
3/Z3 orbifold. That this is indeed the case can be quickly

ascertained by noticing that the quartic terms in (7.16) always contain a term with index

structure (46). When such index is carried by a Φ or a s, the higgsing reduces it to a cubic

term proper to the orbifold whereas, when the index falls on a µ or a µ̄ these terms are set

to zero since those moduli get a mass from the anti-holomorphic term.
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Figure 12: A U(1) instanton in the SPP theory.

8. Some applications and further directions

As an illustration, in this section we present some simple applications of our general results.

We will be very sketchy and will not analyze the dynamical consequences of the contribu-

tions we find, since that would go beyond the scope of the present work. We merely want

to present how easily new contributions can be found by using the moduli actions derived

in the previous sections.

At this point, having left the general derivation and not having any further need of

connecting different theories by higgsing, it is better to reconsider our previous decision

and clean up the notation by relabeling the fields.

Let us start by studying the SPP gauge theory, where we have an arbitrary number of

fractional branes at node 1, a single spacefilling D-brane at node 2, node 3 unoccupied, and

we put one instanton on node 2, see figure 12. This is an instance of a U(1) stringy instanton

as discussed in [40]. There is one chiral superfield Φ11 in the adjoint representation of U(N1)

and two bifundamental chiral superfields Φ12 and Φ21, transforming respectively in the

(N1,−) and (N1,+) of U(N1) × U(1). The tree level superpotential for this configuration

is given by the last term in (5.6), which reads, in the new notation:

W tree
SPP = −Φ21Φ11Φ12 . (8.1)

Let us begin with the integral over the two neutral fermionic zero modes λα̇ which

enforce the following fermionic ADHM constraints:

δF (ω̄1̇µ + ω1̇µ̄)δF (ω̄2̇µ + ω2̇µ̄) = (ω̄1̇µ + ω1̇µ̄)(ω̄2̇µ + ω2̇µ̄) = ω̄α̇ωα̇µµ̄ (8.2)

since there are only two “diagonal” fermionic zero-modes µ and µ̄. This means that we

cannot pull down any term in the anti-holomorphic action since they all include either a µ

or a µ̄. The bosonic integral

∫

d2ωd2ω̄δ3
B(ω̄τ cω)ω̄ω exp(−ω̄|Φ|2ω) (8.3)
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Figure 13: An ADS configuration in the dP1 theory.

turns out to be scale invariant [40] (this is true only for the case of a U(1) node) and thus

gives a field independent non-zero multiplicative constant. (We have collectively denoted

the chiral superfields by Φ in the exponent. The result is independent of Φ anyway.) Since

the structure of the holomorphic couplings to the charged fermions is dictated by (8.1),

we realize that there is only one term in the effective instanton action that remains to be

integrated over:
∫

dN1 µ̄21d
N1µ12 eµ̄21Φ11µ12 , (8.4)

and which yields a determinant of the field Φ11. Thus, we have obtained the following

contribution:

W inst
SPP = Λ3−N1 det[Φ11] , (8.5)

where we have lumped the numerical constants in the prefactor Λ, which for our purposes

can simply be viewed as a dimensionful parameter. It is clear that one can hope to engineer

in this way simple DSB models similar to the ones considered in [32].

Let us now turn to the dP1 gauge theory at the bottom of the cascade, with a fractional

brane content given by (N1, N2, N3, N4) = (1, 2, 3, 0). Treating the SU(3) node as the gauge

group we see that the condition Nf = Nc − 1 is satisfied and placing an instanton at this

node (see figure 13) one indeed generates the ADS superpotential, as discussed in section 6.

Now one may want to consider more stringy phenomena such as what happens if one wraps

an instanton at the unoccupied node or at the U(1) node. It is easy to convince oneself

that neither of these configurations will give rise to any contribution. The instanton at

the unoccupied node suffers from the usual problem with the presence of extra neutral

fermionic zero modes that makes the whole expression vanish. The instanton at the U(1)

node instead has a charged zero mode µ̄3
12 not appearing anywhere in the action due to the
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fact that the tree level superpotential:12

W tree
dP1

= Φ23ǫαβΦα
31Φ

β
12 (8.6)

does not contain the corresponding chiral field Φ3
12. This makes its contribution vanish.

Let us instead see what happens when adding one regular brane to the picture, i.e.

when the fractional brane content is (N1, N2, N3, N4) = (2, 3, 4, 1). This is the other case

where we can have a U(1) node with an instanton, see figure (14). From (7.16) we get the

holomorphic couplings, (after relabeling)

Sholo
dP1

=
1

m

(

µ̄43ǫαβΦα
31Φ

3
12µ

β
24

)

− µ̄41ǫαβΦα
12µ

β
24. (8.7)

The important difference in this configuration is that, since all chiral superfields appear

in the tree level superpotential, there will now be couplings in the instanton action that

include all the fermionic moduli of this configuration. Expanding the holomorphic action

as to saturate the integral over all zero modes one can easily see that there is a contribution

to the superpotential, albeit of high dimension.

As a final example, one can also consider a particular configuration in the dP3 model.

Here as well we relabel the fields in order to make the notation more intelligible. We

have chosen the fractional brane assignment for the dP3 theory to be (N1, N2, N3, N4) =

(P,M,P,M), see figure 15, implying that we have removed the top and bottom nodes of

figure 9. In the simplest possible case, we set M = P = 1 and are left with a tree level

superpotential given by:

W tree
dP3

=
1

m
Φ12Φ23Φ34Φ41, (8.8)

12The notation is such that α, β = 1, 2 distinguish fields and moduli from the same nodes. In the case of

fields from node 1 to node 2 we write Φα
12 and Φ3

12.
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where we note that all the chiral superfields in the quiver appear. This implies that if

we place an instanton at the first node, there will be a coupling like (1/m)µ̄12Φ23Φ34µ41

in the instanton action that will give rise to a quadratic superpotential term. Analogous

mass terms will be generated if we instead place our instanton at a different node. Thus,

summing over all possible locations for a single instanton we get the following structure,

W tot
dP3

=
1

m
Φ12Φ23Φ34Φ41 +

Λ2
1

m
Φ23Φ34 +

Λ2
2

m
Φ34Φ41 +

Λ2
3

m
Φ41Φ12 +

Λ2
4

m
Φ12Φ23 . (8.9)

Notice that we are not allowed to treat the “U(1)” factors as gauge factors and this is also

reflected in the fact that the mass terms generated are not invariant under this symmetries.

As a last remark about this case, notice that if we keep P = 1 but go to M > 1, from

the two “U(1)” instantons left we would get a vanishing contribution since the mass terms

would be replaced by a determinant (e.g. det(Φ12Φ23)) of a matrix of rank one.

Clearly one can construct many more examples, particularly if one also allows for the

presence of orientifolds. For example, the dynamical supersymmetry breaking configura-

tions considered in [64, 20, 32], which involved orbifolds/orientifolds of the conifold, can

be obtained by the higgsing procedure since these singularities can all be embedded in an

appropriate orbifold singularity. In summary, having at one’s disposal the complete action

for the instanton zero modes corresponding to any toric gauge theory should make this

kind of investigation much more efficient and, hopefully, it will uncover corrections to the

action of phenomenological relevance.
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